
1

VPOS Integration manual

1. Introduction

iCheckOutX is a WEB front-end service which simplifies web-shop integration with iPayGate by utilizing web

technology and standard functionalities.

iCheckOutX provides:

 Standardized interface with iPayGate

 3D-Secure 2.2 integrated support

 Administration interface for review, completion and cancellation of orders (transactions)

 Integrated into wider security infrastructure

 Effective appearance integration into web site design

 Simplified integration of web shops with iPayGate system and eCommerce processing infrastructure.
Serves customer with payment details page

 Web shop only implements shopping basket

1.1. Supported transactions types

iCheckOutX solution supports multiple transaction types and payment channels.

Supported transaction types include:

 Purchase

 Pre-authorization and Completion

 Refund

 Reversal / Cancellation - for transactions made on current business day.

 One click purchase - using the stored Cardholder values.

1.2. iCheckOutX System Architecture

The architecture of typical high-availability iCheckOutX / Internet Payment Gateway (IPGW) solution is described

in the following image. The functionalities provided by the system are divided into categories:

- iCheckOutX front-end

- iCheckOutAdminX GUI (for merchant and transaction administration) integrated into the Merchant

portal (’Kereskedői portál’)

- Internet Payment Gateway backend

iCheckOutX front-end

Request from web shops (V-POS) are processed by the frontend - iCheckOutX system. iCheckOutX system

validates all incoming requests, verifies the received web shop information, checks if merchant is active and

allowed to perform the specific transaction type. If request validation is successful, iCheckOutX continues with

2

3D secure validation. The 3D secure validation is done utilizing the 3D Server that communicates with Directory

server of the networks.

If required, iCheckOutX will initiate additional security validations as defined in 3D Secure standard. If cardholder

authentication is required, iCheckOutX will redirect the cardholder to issuer API to enter the required

information. After these steps are done, the transaction is authorized through the IPGW system.

Internet Payment Gateway – IPGW

Internet payment gateway solution is based on server solution that is configured to support card-not-present

transaction types. The IPGW solution supports different transactions types: purchase, preauthorization and

completion, refund, reversal.

IPGW can be used to securely store cardholder data that can be used for initiating recurring transactions or

enabling cardholders to initiate payment without (re)entering card information (One-click payment).

Sensitive cardholder data on IPGW are stored encrypted with key protected inside Hardware Security Module

(HSM) device. IPGW supports IBM CCA 4767 and Tales 9000 and 10K HSM devices.

1.3. Integration procedure

1. Registration of the merchant in the banking systems using the information provided by the merchant.

2. Providing access to the Merchant Portal (’Kereskedői portál’) system in the sandbox:

Secret key must be exchanged between iCheckoutX and Merchant, which is used to sign all requests

between merchant and iCheckoutX system.

The Bank will send a registration letter to the email address of the user provided by the Merchant, by

clicking on the link in the letter, once registered, the user will have access to the test secret key in the

Merchant Portal (’Kereskedői portál’), which the user can retrieve as indicated in Annex V.

3. The Merchant will receive a welcome letter containing the contact details of the documentation

required for the integration, as well as the Merchant and Terminal details in the sandbox, as the

Merchant and Terminal ID must be included in the transaction request.

4. Webshop development: The technical steps of the integration are described here in chapter 2 (page 4).

5. Testing: once the sandbox is ready and the transactions can be successfully initiated, the tester must

execute the tests in the test case package and verify their success in cooperation with the bank's service

provider. The test cases to be executed and the parameters to verify their success are set out in Annex

II.

6. Provide access to banking systems and merchant data in a production environment:

After the completion of the testing (all relevant test cases are checked by the bank's service provider

and feedback is provided to the Merchant) and the verification of the Merchant's website/webshop,

the bank will provide access to the Merchant's specified users in the Merchant Portal (production

environment), the process is the same as described in point 2.

Access to the Security Key and Merchant/Terminal data required for go live is provided by the bank in

the Merchant Portal (production environment), as the prerequisite for go live, for the first successful

transaction request to be accepted, is that the transaction request contains the Security Key and

Merchant/Terminal data valid in the production environment.

3

1.4. iCheckoutX Message Flow - Transaction flow

The iCheckOutX transaction flow begins with merchant web shop sending the initial purchase request described

in integration chapter. After validating the request, iCheckOutX will display the landing page for Cardholder data

input. The design of the landing page can be customized for each merchant by defining merchants CSS. If no

Merchant CSS is provided then default landing page will be displayed. On the payment landing page, the

Customer can enter the Cardholder information (Name, Surname, Address…) than the Card data (PAN, CVV,

expiry date).

Payment Landing page

After the cardholder data is entered, iCheckOutX will automatically perform 3D Secure validation for the card. If

no 3D Secure validation is needed for cards (card is not enrolled in 3DS or is marked as frictionless) iCheckOutX

will continue to Authorization.

If Cardholder Authentication is required iCheckOutX will display Issuers page and wait for customer to continue

the authentication process.

4

After the 3D Secure process is done the transaction is authorized through IPGW system with appropriate

acquirer. This process is transparent to the Merchant web shop.

In the final step the iCheckOutX redirects customer back to the original Web shop URL with the transaction result.

If the transaction is successful (is Approved) authorization code and other data is returned to the merchants Web

shop. Response message details are defined here.

The merchant must display the result and details of the transaction. The bank may also send an confirmation

message (by email) to the merchant and the cardholder on the result and details of the transaction, but this

service does not exempt the merchant from displaying the requested information on its website.

2. Integration with iCheckOutX system

This chapter describes all integration details. It defines message types and data elements for all iCheckOutX

messages.

To simplify the integration process, a predefined HTML template is provided that can be used to test the

iCheckOutX integration. The scripts assumes the role of a Web shop and can be used to initiate different

transaction requests towards iCheckOutX.

Integration script can be downloaded from this link.

iCheckOutX service integration with Internet shop system is done through HTML POST method. POST data sent

in form must be UTF-8 encoded. Example:

<form enctype="application/x-www-form-urlencoded;charset=UTF-8">

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#response-message
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/assets/icheckoutx_test_script_SHA512_202105.zip

5

2.1. iCheckOutX Messages

This section defines the messages defined for iCheckOutX system. Message exchange between merchant shop

and iCheckOutX service is done using HTTP protocol. Web shop prepares HTML form which is sent usign HTTP

POST to iCheckOutX endpoint. An HTTP POST request should be sent to URL:

https://securepay.mbhbank.hu/iCheckOutX/v1/icheckout/confirm.xhtml

The URL address used for testing is given in Annex II.

2.2. iCheckOutX Request Parameters

Parameter Name Parameter Description Value
Format

Value
Length

account_id One-Click Payments Account ID AN 36

additional_compl_data1 Additional Completion Data AN 36

card_cvd Payment Card CVV N 4

card_expdate Payment Card Expiration Date N 4

card_pan Payment Card Number N 20

customer_address Customer Street AN 200

customer_city Customer City AN 50

customer_country Customer Country AN 30

customer_email Customer Email AN 30

customer_lang Customer Language AN 2

customer_name Customer First Name AN 50

customer_phone Customer Phone AN 30

customer_surname Customer Last Name AN 50

https://securepay.mbhbank.hu/iCheckOutX/v1/icheckout/confirm.xhtml

6

customer_zip Customer ZIP code AN 8

discounted_amount Unused field AN 13

discounted_card_types Unused field AN 200

discounted_max_installments Unused field N 2

fixed_card_type Fixed (unchangeable) card type AN 10

fixed_installments Fixed (unchangeable) number of installments AN 5

merchant_approve_url Merchant Dynamic Approve URL AN 128

merchant_decline_url Merchant Dynamic Decline URL AN 128

merchant_id Merchant ID (MID) AN 16

order_delivery_date Order Delivery Date AN 11

order_number Unique Order Number AN 50

payment_method Payment method that will be used. If not present, all
methods will be allowed.

AN 16

purchase_amount Purchase Amount AN 13

purchase_currency Purchase Currency N 3

purchase_description Purchase Description (for example: ’Test transaction’) AN 200

purchase_installments Purchase Installments N 2

recurring_order_number Original Order Number for Recurring Payments AN 50

request_hash Request Hash AN 128

request_type Request Type AN 15

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#merchant-id
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#order-number
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#payment-method
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#purchase-installments
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#recurring-order-number
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type

7

terminal_id Terminal ID (TID) AN 32

trantype Transaction Type AN 20

Definition of Request Parameters Presence

Presence is defined as:

- M, mandatory

- O, optional

- C, contiditonal (i.e. account_id must be present fore One-Click transactions)

- “-”, not relevant

Parameter Name Preauthorization Authorization Completion Reversal Refund

account_id C C - - -

additional_compl_data1 - - O - -

card_cvd O O - - -

card_expdate O O - - -

card_pan O O - - -

customer_address* O* O* - - -

customer_city* O* O* - - -

customer_country* O* O* - - -

customer_email* O* O* - - -

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#terminal-id
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#trantype

8

Parameter Name Preauthorization Authorization Completion Reversal Refund

customer_lang O O - - -

customer_name* O* O* - - -

customer_phone* O* O* - - -

customer_surname* O* O* - - -

customer_zip* O* O* - - -

discounted_amount O O - - -

discounted_card_types O O - - -

discounted_max_installme

nts
O O - - -

fixed_card_type O O - - -

fixed_installments O O - - -

merchant_approve_url O O O O O

merchant_decline_url O O O O O

merchant_id M M M M M

order_delivery_date O O - - -

9

Parameter Name Preauthorization Authorization Completion Reversal Refund

order_number M M M M M

payment_method O O - - -

purchase_amount M M M M M

purchase_currency M M M M M

purchase_description O O - - -

purchase_installments O O - - -

recurring_order_number C C - - -

request_hash M M M M M

request_type transaction transaction completion reversal refund

terminal_id M M M M M

trantype preauth auth completion reversal refund

Details on parameter presence for One-Click Payments are listed in One-Click Payments chapter.

*The Bank collect the indicated data for each transaction, and it is therefore recommended that these

data are collected and transmitted so that the cardholder does not have to enter them on the payment

landing page. The provision of this information on the payment landing page is therefore mandatory

and the payment experience is enhanced if the information is submitted in the payment request, so

’pre-filling’ these fields.

At the merchant's request, it is also possible to hide these fields on the payment landing page, if the

data fields are always filled in, in which case the cardholder will not be able to modify these fields on

the payment landing page.

10

2.3. iCheckOutX Response Parameters

Parameter Name Parameter Description Value
Format

Value
Length

account_id One-Click Payments Account ID AN 36

acquirer Order Acquirer AN 16

card_expdate Payment Card Expiration Date N 4

card_type Payment Card Type AN 64

customer_address Customer Street AN 200

customer_city Customer City AN 50

customer_country Customer Country AN 30

customer_email Customer Email AN 30

customer_lang Customer Language AN 2

customer_name Customer First Name AN 50

customer_surname Customer Last Name AN 50

customer_tel Customer Phone AN 30

customer_zip Customer ZIP code AN 8

discounted_amount Discounted Amount AN 13

masked_pan Masked Payment Card Number AN 20

merchant_id Merchant ID (MID) AN 16

11

order_date Order Date AN 11

order_delivery_date Order Delivery Date AN 11

order_number Unique Order Number AN 50

payment_method Payment method that will be used. If not present, all
methods will be allowed.

AN 16

purchase_amount Purchase Amount AN 13

purchase_currency Purchase Currency N 3

purchase_description Purchase Description (for example: ’Test transaction’) AN 200

purchase_installments Purchase Installments N 2

request_type Request Type AN 15

response_appcode Authorization Approval Code AN 6

response_hash Response Hash AN 128

response_message Authorization Response Message AN 200

response_result Response Result N 3

response_systan Transaction System Trace Audit Number AN 6

transaction_type Transaction Type AN 20

2.4. Parameter details

2.4.1. request_type - A kérelem típusa

Type: alphanumeric Mandatory: Yes

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#order-number
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#payment-method
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#purchase-installments
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#response-hash
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#response-message

12

The request_type field defines the type of request sent to iCheckOutX system. The type can one of the following

values:

Request type Description

transaction Indicates a request for financial transaction. Check trantype field for additional details.

register
In case of a payment with saved card data (one-click transaction), the operation that initiates the
saving of card data and the creation of a unique identifier.

update In case of payment with saved card data (one-click transaction), an operation to update/modify data.

get
In case of payment with saved card data (one-click transaction), retrieval of card data to the webshop
based on a unique identifier, the card number always appears as masked data.

use
In case of a payment with saved card details (one-click transaction), initiating a transaction with a
unique identifier.

delete In case of a payment with saved card details (one-click transaction), delete unique identifier.

recurring Indicates a request for an automated financial transaction.

checkstatus Used for checking the status of an order previously processed by the system

2.4.2. trantype - Transaction Type

Type: alphanumeric Mandatory: Yes

The trantype field defines the type of type of Financial transaction request sent to iCheckOutX system.

Valid values Description

auth Purchase request. Transaction is done in one step, no completion is required.

preauth Preauthorization request

13

Valid values Description

completion Completion of previous Preauthorization request. Preauth must be Approved.

reversal
Transaction cancellation request for transactions that have not yet been settled (successfully normal
transaction on current business day or uncompletion pre-authorisation)

refund
Refund of previously done Purchase or Completion transactions. Max amount limited to the amount of
original Purchase or Completion.

2.4.3 merch_id – Merchant ID (MID)

Type: alphanumeric Mandatory: Yes

The merch_id field indicates the merchant ID (MID), which is defined by the Bank.

It should be paired with terminal_id field to uniquely identify the merchant and terminal from which the

transaction request originates.

2.4.4. terminal_id - Terminal ID (TID)

Type: alphanumeric Mandatory: Yes

The terminal_id field indicates the terminal ID (TID), which to be defined and transferred by the Bank during

integration.

It should be paired with merch_id field to uniquely identify the merchant and terminal from which the

transaction request originates.

2.4.5. order_number – Order Number

Type: alphanumeric Mandatory: Yes

The order_number field indicates the unique order identificator, which is defined/generated by the merchant.

Merchant should make sure the order_number value is unique for the originating terminal_id.

2.4.6. merchant_approve_url / merchant_decline_url – Merchant Dynamic Callback URLs for Approved and
Declined Transactions

Type: alphanumeric Mandatory: No

The merchant_approve_url and merchant_decline_url parameters can be used in a transaction request to define

on which URL the webshop expects the final response.

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#terminal-id
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#merchant-id

14

These URLs are commonly set permanently under merchant settings in iCheckOutX Admin GUI and do not have

to be sent with each request. Using merchant_approve_url and merchant_decline_url in a transaction request

overrides the default merchant settings for that transaction.

Examples:

merchant_approve_url=https://host-domain.com/iCheckOutX/v1/testMerchant/approved

merchant_decline_url=https://host-domain.com/iCheckOutX/v1/testMerchant/declined

2.4.7. purchase_installments - Purchase Installments

Type: numeric Mandatory: No

A field used to split order payment into installments.

Can be either 0 or >= 2, while the maximum value is defined by merchant transaction rules. Merchant can also

enforce different installment rules depending on the purchase amount.

Value of 0 indicates a one-time payment.

In a merchant response, this field represents the final number of installments chosen by the customer.

2.4.8. recurring_order_number - Recurring Order Number

Type: alphanumeric Mandatory: Yes (only in cases of subsequent ‘recurring’ requests)

A field used for recurring payments, recurring_order_number indicates the original order to which the new order

is reffered.

2.4.9. payment_method - Payment Method

Type: alphanumeric Mandatory: No

When payment_method is sent as a request parameter, it defines a single payment method that is allowed by

merchant and will be used for that particular payment.

Possible values are: card (Credit Card Payment)

2.4.10. request_hash - Request security hash

Type: alphanumeric Mandatory: Yes

Request hash is calculated using the SHA512 algorithm and the string that is used for SHA512 encryption is

constructed as follows:

1. Convert all parameter names to lowercase. Example: “Customer_Name=John” is translated to

lowercase “customer_name=John” The value (in this example John) is not converted.

2. Sort all parameters alphabetically.

3. In hash calculation input only include the parameters with non empty values.

4. Concatenate all parameters separated with “&”. Example:

account_id=123&customer_address=Customer Address&customer_city=New York…

5. Add secret_key=XXXXXX as the last parameter in hash input. (replace XXXXX with unique secret

key assigned to merchants.

6. Calculate SHA512 hash for constructed input. Input to SHA512 function must be encoded as UTF-8

7. Use the calculated hash as request_hash parameter in request.

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#secret-key

15

Possible parameters used for request_hash calculation are:

account_id

additional_compl_data1

card_cvd

card_expdate

card_pan

customer_address

customer_city

customer_country

customer_email

customer_lang

customer_name

customer_phone

customer_surname

customer_zip

discounted_amount

discounted_card_types

discounted_max_installments

fixed_card_type

fixed_installments

merchant_approve_url

merchant_decline_url

merchant_id

order_delivery_date

order_number

payment_method

purchase_amount

purchase_currency

purchase_description

purchase_differperiod

purchase_installments

request_hash

request_type

terminal_id

trantype

The delimiter that is used to separate the parameters is ‘&’.

Example of hash calculation:

Input parameters:

merchant_id=5656565656

16

purchase_amount=1.00

purchase_currency=191

order_number=1ORD_120208_19

request_type=transaction

trantype=auth

submit_type=manual

purchase_installments=0

purchase_description=Test transaction

customer_name=John

customer_surname=Smith

customer_address=498 Gainsway Lane

customer_country=United States

customer_city=New York

customer_zip=10040

account_id=

Sorted and filtered list (removed empty account_id). Added secret_key=SecretKey123 at the end.

customer_dress=I8 Gainsway Lane

customer_city=New York

customer_country=United States

customer_name=John

customer_surname=Smith

customer_zip=10040

merchant_id=5656565656

order_number=1ORD_120208_19

purchase_amount=1.00

purchase_currency=191

purchase_description=Test transaction

purchase_installments=0

request_type=transaction

submit_type=manual

trantype=auth

secret_key=SecretKey123

Calculate SHA

SHA512(customer_address=498 Gainsway Lane&customer_city=New

York&customer_country=United

States&customer_name=John&customer_surname=Smith&customer_zip=10040&merchant_id=5656565656&

order_number=1ORD_120208_19&purchase_amount=1.00&purchase_currency=191&purchase_description=T

est

transaction&purchase_installments=0&request_type=transaction&submit_type=manual&trantype=auth&secr

et_key=SecretKey123)

17

=

a87a67e635e726e591e01cab3e11b4c3ba4522fa4e4cad05124085df9ce7169bd59c4ee12759bd1d7a7d206cb7e

b58b2784690647f0d5b0c30a00019eb7107ec

Request to iCheckOutX must have:

request_hash=a87a67e635e726e591e01cab3e11b4c3ba4522fa4e4cad05124085df9ce7169bd59c4ee12759bd1

d7a7d206cb7eb58b2784690647f0d5b0c30a00019eb7107ec

2.4.11. response_hash - Response security hash

Type: alphanumeric Mandatory: Yes

Response hash is calculated using the SHA512 algorithm and the string that is used for SHA512 encryption is

constructed as follows:

1. Convert all received parameter names to lowercase. Example: “Customer_Name=John” is

translated to lowercase “customer_name=John” The value (in this example John) is not

converted.

2. Omit response_hash parameter from hash calculation.

3. Sort all parameters alphabetically.

4. In hash calculation input only include the parameters with non-empty values.

5. Concatenate all parameters separated with “&”. Example:

acquirer=123&customer_email=example@mail.com&customer_lang=hr…

6. Add secret_key=XXXXXX as the last parameter in hash input. (replace XXXXX with unique secret

key assigned to merchants.

7. Calculate SHA512 hash for constructed input. Input to SHA512 function must be encoded as

UTF-8

8. Check if calculated hash matches the response_hash parameter value in response

Possible parameters used for response_hash calculation are:

account_id

acquirer

card_expdate

card_type

customer_address

customer_city

customer_country

customer_email

customer_lang

customer_name

customer_surname

customer_tel

customer_zip

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#secret-key

18

discount_amount

masked_pan

merchant_id

oneclick_result

order_date

order_number

payment_method

purchase_amount

purchase_currency

purchase_description

purchase_installments

request_type

response_appcode

response_hash

response_message

response_result

response_systan

transaction_id

transaction_type

The delimiter that is used to separate the parameters is ‘&’.

Example of hash calculation:

Merchant received parameters:

 acquirer=123

card_type=Visa

customer_address=Test Address

customer_city=Test City1

customer_country=Hrvatska

customer_email=test@email.com

customer_lang=hr

customer_name=TestName

customer_surname=TestSurname

customer_tel=+38512345678

customer_zip=10000

order_date=2021-09-14 11:54:10.004

order_number=1ORD_121149_1567

payment_method=

purchase_amount=15.00

purchase_currency=191

purchase_description=Test order

purchase_installments=0

request_type=transaction

19

response_appcode=781722

response_hash=7c434756a1fc689f651334ed88603c9c8664b384bacdab82265e2f0cc9827309b184eb200cc0315

5977c0590a655b90f0b3594cf9edcbfc19c500f05dd1fe06f

response_message=APPROVED

response_result=00

response_systan=002977

transaction_id=

transaction_type=auth

account_id=

oneclick_result=

20

Sorted and filtered list (removed empty account_id). Added secret_key parameter at the end.

acquirer=123

card_type=Visa

customer_address=Test Address

customer_city=Test City1

customer_country=Hrvatska

customer_email=test@email.com

customer_lang=hr

customer_name=TestName

customer_surname=TestSurname

customer_tel=+38512345678

customer_zip=10000

discount_amount=0.00

order_date=2021-09-14 11:54:10.004

order_number=1ORD_121149_1567

purchase_amount=15.00

purchase_currency=191

purchase_description=Test order

purchase_installments=0

request_type=transaction

response_appcode=781722

response_message=APPROVED

response_result=00

response_systan=002977

transaction_type=auth

secret_key=XXX

calculate SHA

SHA512(acquirer=123&card_type=Visa&customer_address=Test Address&customer_city=Test

City1&customer_country=Hrvatska&customer_email=test@email.com&customer_lang=hr&customer_name=T

estName&customer_surname=TestSurname&customer_tel=+38512345678&customer_zip=10000&discount_a

mount=0.00&order_date=2021-09-14

11:54:10.004&order_number=1ORD_121149_1567&purchase_amount=15.00&purchase_currency=191&purch

ase_description=Test

order&purchase_installments=0&request_type=transaction&response_appcode=781722&response_message=

APPROVED&response_result=00&response_systan=002977&transaction_type=auth&secret_key=???)

=

7c434756a1fc689f651334ed88603c9c8664b384bacdab82265e2f0cc9827309b184eb200cc03155977c0590a655

b90f0b3594cf9edcbfc19c500f05dd1fe06f

Response hash value from iCheckOutX must be:

21

response_hash=7c434756a1fc689f651334ed88603c9c8664b384bacdab82265e2f0cc9827309b184eb200cc0315

5977c0590a655b90f0b3594cf9edcbfc19c500f05dd1fe06f

2.4.12. response_result – Response Result

Type: alphanumeric

Field contains response code received from the authorization host. Required only in responses. Response code

is the only value that determines whether the request is approved or declined.

Response code Response code description

000 Approved/Accepted

100 Declined

101 Expired Card

104 Restricted Card

109 Invalid merchant

111 Card not on file

115 Requested function not supported

121 Insufficient funds

400 Reversal accepted

909 Technical error – unable to process request

912 Host link down/ Server not available

930 Transaction not found

931 Transaction voided/reversed

The value of the ‘response result’ field should be used to provide the customer with a provide to the

transaction result in the webshop:

Successful transaction message if ‘response result’ is ‘000’, for all other values the transaction message is

‘Unsuccessful transaction’.

2.4.13. response_message - Response Message

Type: alphanumeric Mandatory: Yes

The response_message field contains details about order status on the payment system.

The information provided in the ‘response_message’ field can be used to inform the merchant, the direct display
of this message in the webshop is not recommended (in point 2.4.12)

2.4.14. Merchant notification (server-to-server)

Aside from the final response that merchants receive on customer redirect to webshop, there is an additional
possibillity to receive that same response on a dedicated merchant’s endpoint as soon as the transaction has
been approved or declined. This can be useful to reduce the potential uncertainty of the transaction status in
cases when customers close their web-browser session before redirecting, or lose internet connection etc.

Parameters (as well as response hash) in s2s notification will have the same values as the customer redirect a
few moments later.

Parameters will be sent via HTTP POST request in a JSON format.

22

To verify the notification has been received successfully by the merchant, iCheckOutX should receive HTTP 200
with JSON parameter status=OK. In all other cases, iCheckOutX will try to send the same notification until
reaching out maximum number of tries or receiving status=OK.

Merchant notification setting can be triggered using the iCheckOutAdminX interface, which is also where the
endpoint URL will be set.

If a webshop does not have a designated s2s response endpoint, it can implement a similar status checking
method using checkstatus requests.

2.5.1 Purchase Request

Payment initiation request: trantype=auth

merchant_id=DEMOMID

purchase_amount=15.00

purchase_currency=191

order_number=1ORD_1211310_4926

request_type=transaction

trantype=auth

purchase_description=Test+order

customer_name=TestName

customer_surname=TestSurname

customer_address=Test+Address

customer_country=Hrvatska

customer_city=Test+City1

customer_zip=10000

customer_lang=hr

customer_email=test@email.com

customer_phone=+38512345678

terminal_id=IN060751

request_hash=01322f2d817a9a3f8bd244f9a77221c3307ac19ae1f1aa72180fd22834f96f0122a07361e9befff272

920f1276506a51fac51a7e8c0ee62262ba9c8afb91b823

Merchant receives response parameters:

account_id=

acquirer=***

card_type=Visa

card_expdate=2404

customer_address=Test Address

customer_city=Test City1

customer_country=Hrvatska

customer_email=test@email.com

customer_lang=hr

customer_name=TestName

customer_surname=TestSurname

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#checking-order-status

23

customer_tel=+38512345678

customer_zip=10000

masked_pan=400000******0000

merchant_id=DEMOMID

oneclick_result=

order_date=2021-10-13 15:38:13.752

order_number=1ORD_1211310_4926

payment_method=

purchase_amount=15.00

purchase_currency=191

purchase_description=Test order

purchase_installments=

request_type=transaction

response_appcode=153819

response_hash=7e5ff52cf33912d78f635b1e4be1969369992e9bb6195025a9a5197465d27aeeafc4af6fb07f7c12

4154bee31af1eacf19cead10efdfaceb61b299cc7d7b329d

response_message=APPROVED

response_result=000

response_systan=003167

transaction_type=auth

2.5.2. Preauthorization Request

Payment initiation request: trantype=preauth

merchant_id=DEMOMID

purchase_amount=2.40

purchase_currency=191

order_number=1ORD_1211310_3939

request_type=transaction

trantype=preauth

purchase_description=Test+order

customer_name=TestName

customer_surname=TestSurname

customer_address=Test+Address

customer_country=Hrvatska

customer_city=Test+City1

customer_zip=10000

customer_lang=hr

customer_email=test@email.com

customer_phone=+38512345678

terminal_id=IN060751

request_hash=3eebb82fdfae91ab864e5a07b2bd7886ee1a4e844a76f1021629af1a36538f8e1c220424dcb54093

9ca36e4e94d39110d234122b32286121507e215cc7d02fd2

24

Merchant receives response parameters:

account_id=

acquirer=***

card_type=Visa

card_expdate=2509

customer_address=Test Address

customer_city=Test City1

customer_country=Hrvatska

customer_email=test@email.com

customer_lang=hr

customer_name=TestName

customer_surname=TestSurname

customer_tel=+38512345678

customer_zip=10000

masked_pan=400000******0000

merchant_id=DEMOMID

oneclick_result=

order_date=2021-10-13 15:42:10.841

order_number=1ORD_1211310_3939

payment_method=

purchase_amount=2.40

purchase_currency=191

purchase_description=Test order

purchase_installments=

request_type=transaction

response_appcode=154216

response_hash=1be6687e1545098d05b81cd35a9f6e61acf9a3e39585ebe5099deef3244f7e9e58e0aba829dbf5

4336bc3843de6869f2562e6e8543a208de97b3c4490be605f8

response_message=APPROVED

response_result=000

response_systan=003168

transaction_type=preauth

2.5.3. Completion of the Preauthorized Request

Completion request must refer to the original (preauthorized) transaction using the order_number value:

merchant_id=DEMOMID

purchase_amount=2.40

purchase_currency=191

order_number=1ORD_1211310_3939

request_type=transaction

trantype=completion

purchase_description=Test+order

customer_lang=hr

25

terminal_id=IN060751

request_hash=1660fab796d5082db795b94756e9cdd449b6495324b9213b19d8b2fde08db78306814fad2adfc77

23e8e54ad60bdb74a8443156dd963bea3287c1251d001d463

If a completion request is sent through the webshop, merchant receives response parameters:

account_id=

acquirer=***

card_type=

card_expdate=

customer_address=

customer_city=

customer_country=

customer_email=

customer_lang=hr

customer_name=

customer_surname=

customer_tel=

customer_zip=

masked_pan=

merchant_id=DEMOMID

oneclick_result=

order_date=

order_number=1ORD_1211310_3939

payment_method=

purchase_amount=2.40

purchase_currency=191

purchase_description=Test order

purchase_installments=

request_type=transaction

response_appcode=154830

response_hash=c68b3a242449c89f1bb8de9e116cda74f4c47985ccae09998e1efb4d2dba00446d74edd0a50225

c26e1ff5adc18baff7774ac751d9dfe2e061b30f8cfa1ac88a

response_message=APPROVED

response_result=000

response_systan=003168

transaction_type=completion

2.5.4. Refund Request

Refund request must also refer to the original transaction using the order_number value:

request_type=refund

merchant_id=DEMOMID

26

purchase_amount=15.00

purchase_currency=191

order_number=1ORD_1211310_4926

request_type=transaction

trantype=refund

purchase_description=Test+order

customer_name=TestName

customer_surname=TestSurname

customer_address=Test+Address

customer_country=Hrvatska

customer_city=Test+City1

customer_zip=10000

customer_lang=hr

customer_email=test@email.com

customer_phone=+38512345678

terminal_id=IN060751

request_hash=2c3414c7426a446f90b15f1bbc94bc5de2302175edcbb2610bc20cd54b1a08a15e447af03af26503

63a857ecdf8dd393a7f5f10c8025306867ee8f2f19e0c75b

account_id=

acquirer=***

card_type=

card_expdate=

customer_address=Test Address

customer_city=Test City1

customer_country=Hrvatska

customer_email=test@email.com

customer_lang=hr

customer_name=TestName

customer_surname=TestSurname

customer_tel=+38512345678

customer_zip=10000

masked_pan=

merchant_id=DEMOMID

oneclick_result=

order_date=

order_number=1ORD_1211310_4926

payment_method=

purchase_amount=15.00

purchase_currency=191

purchase_description=Test order

purchase_installments=

request_type=transaction

response_appcode=155435

response_hash=ff288cdd3659fe97fb36ef3339a6d7a405d57f9e6f2a16b40186742074cbdaaf9fa9ef3653d8b275

62dae651d8354816a72eae8b9d3d12b56b0e80e102905fca

response_message=APPROVED

27

response_result=000

response_systan=003167

transaction_type=refund

2.6. Payment by Link

Instead of initiating payments through the webshop, merchant can also prepare an order on customer demand

and provide a payment link that is sent to customer via e-mail. When the customer follows the link, a checkout

form will be presented to them with pre-filled order ID, purchase amount and other order details.

To generate payment link for the customer, merchant has to prepare HTTP GET request which will send the

payment initiation parameters to iCheckOutX. The link can be presented to customer in text format, as a button,

linked image or any other HTML implementation by merchant’s choice.

Parameters appended to the payment link’s query are the same request parameters that are used for regular

transaction initiation. However, in case of Payment by Link, HTTP GET method should be used instead of HTTP

POST.

It is important to never include the merchant’s secret_key value in the URL, as it is a security parameter that

should not be accessible to customer. It is only used for hash calculation, again using the same procedure as in

the standard payment requests.

After clicking the link in the e-mail, customer only has to fill out their card data and personal data that is required

for continuing the payment.

Example of a fully formed payment link:

https://host-

domain/iCheckOutX/v1/icheckout/confirm.xhtml?merchant_id=DEMOMID&purchase_amount=15.00&purchas

e_currency=191&order_number=1ORD_122082_4631&request_type=transaction&trantype=auth&purchase_d

escription=Test+order&customer_country=Hrvatska&customer_lang=hr&terminal_id=DEMOTID&request_has

h=2d83f681da0e2afdef5967d5f7e6a1586fed0fb40a0ea98474476dd795e3ba021096b49c3511a20d57de684f59

fbecfb8a173a635dfe354a6b566b2f54f901b0

Notice: ’host-domain’ should be replaced with the exact system domain.

2.7. Checking Order Status

To check order status at any moment, an HTTP POST request should be made to URL:

https://securepay.mbhbank.hu/iCheckOutX/v1/icheckout/confirm.xhtml

Notice: ’host-domain’ should be replaced with the exact system domain.

If an order with specified order_number exists for the specified merchant, response from iCheckOut will contain

the corresponding authorization or preauthorization response_result. Transaction is considered approved only

if its response_result is equal to “000”. Response will also contain other details for queried order such as

response_message, order_date, systan and approval_code.

Parameter order_lifecycle can obtain the following values:

Case a) Order is not found

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#icheckoutx-request-parameters
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#secret-key
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash
https://securepay.mbhbank.hu/iCheckOutX/v1/icheckout/confirm.xhtml
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#response-result

28

order_lifecycle = “Order not found”

Case b) Order is pending

order_lifecycle = “Received” OR order_lifecycle = “Sent”

Case c) Order is declined

order_lifecycle = “Declined” OR order_lifecycle = “Canceled” OR order_lifecycle = “Session expired”

Case d) Order is approved

order_lifecycle = “Authorized” OR order_lifecycle = “Completed” OR order_lifecycle = “Refunded” OR

order_lifecycle = “Reversed” A “host-domain” adatokat természetesen a valóban használatban lévő

domain-nel kell helyettesíteni

Ha a megadott kereskedőhöz kapcsolódóan létezik megrendelés/tranzakció a megadott egyedi azonosítóval
(order_number), az iCheckOut válaszában megadja a vonatkozó normál tranzakció, vagy előengedélyezéses
tranzakció eredményére vonatkozó információt (response_result). A tranzakció abban az esetben tekinthető
sikeresnek, ha „response_result” értéke "000" lesz. A válasz tartalmazza a lekérdezés mezősorrendjének
megfelelő rendben a következő mezők értékeit is is: „response _message”, „order date, „systan”, „apporval
code”

Az „order_lifecycle” paraméter a következő értékeket kaphatja:

a) A megrendelés nem található
order_lifecycle = “Order not found”

b) A megrendelés függőben van
order_lifecycle = “Received” OR order_lifecycle = “Sent”

c) A megrendelést elutasították
order_lifecycle = “Declined” OR order_lifecycle = “Canceled” OR order_lifecycle = “Session expired”

d) A megrendelést jóváhagyták
order_lifecycle = “Authorized” OR order_lifecycle = “Completed” OR order_lifecycle = “Refunded” OR
order_lifecycle = “Reversed”

Response Hash should be calculated the same way as in standard e-commerce transactions. In the following
example, these parameters were included in response hash calculation:

card_type=PBZ Visa
order_date=2021-09-29 12:32:38.889711
order_number=1ORD_121299_3108
response_appcode=874161
response_message=APPROVED
response_result=000
response_systan=003055
secret_key=XXXXX

checkstatus request example

merchant_id=DEMOMID

order_number=1ORD_121299_3108

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#response-result
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#response-hash

29

request_type=checkstatus

terminal_id=IN060751

request_hash=33aba71b36782c729d89c63d3651799eac1496485b4b03d169b97e6e1becb14b46a5e894b7a5c8

ea5b981a3a112956feccc78c1c3d353134c5c12dc99dfdadc6

checkstatus response example

<response>

 <card_type>PBZ Visa</card_type>

 <order_date>2021-09-29 12:32:38.889711</order_date>

 <order_number>1ORD_121299_3108</order_number>

 <response_appcode>874161 </response_appcode>

 <response_hash>

c65ee526cf852a47f7b6ec64fafa78969fdcbde96a706acb41f1e90b694edcf1ac91bbb995b956bd122a7a01cb0cc

56293c914979756973e9d6004768d752039

 </response_hash>

 <response_message>APPROVED</response_message>

 <response_result>000</response_result>

 <response_systan>003055</response_systan>

</response>

2.8. One click payment

iCheckOut system supports one-click payment type orders and transactions. This functionality is typically used
when cardholder wants to save his card data and use it in subsequent orders on the webshop. This is useful as
cardholder doesn’t need to enter his card data with every order, he just selects on the webshop which card he
would like to use, and icheckout does all the rest.

For One-Click payment transactions, an HTTP POST request should be sent to URL:

https://securepay.mbhbank.hu/iCheckOutX/v1/icheckout/confirm.xhtml
Notice: ’host-domain’ should be replaced with the exact system domain.

Where host-domain/ represents a merchant web domain, which is usually different for each merchant.

One-click payment requests that are sent to icheckout are similar as regular authorization requests, with a few
modifications in parameters and request types.

There are 5 different request types that can be used for one-click payment transactions:

1. Register - request type that is sent for initial card registration for the webshop. Icheckout uses this
request to issue a unique account_id for the card, which can subsequently be used for later payments. Note that
subfield account_id must be empty in the request, as it will be assigned by icheckout. Parameter acount_id is of
type UUID and is written as a sequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a total of
32 digits. Registered account will not be active until card number, expiry date and card verification data is

https://securepay.mbhbank.hu/iCheckOutX/v1/icheckout/confirm.xhtml

30

assigned to account. If expiry data and/or card verification data is missing during register account request, update
account request must be used to add missing elements before account becomes active.

2. Update - request type that is used to update card information for a specific account_id. This should be
used when card number, expiry date and/or card verification data needs to be changed or added to the account.
Any number of elements can be updated with one update request. Elements that must remain unchanged must
not be sent in update account request.

3. Get - This is instruction for icheckout to get card data from existing account and return it to webshop.
Card PAN is always returned masked. Request must contain a valid account_id .

4. Use - This is instruction for icheckout to use existing (stored) account information to retrieve card
number, expiry date and card verification data and use it for authorization, preauthorization,completion, reversal
or refund. Request must contain a valid account_id.

5. Delete - This is instruction for icheckout to delete existing account, and should be used when account is
not required any more. Request must contain a valid account_id.

Register account

The following table contains request parameters that need to be sent for valid account registration.

Presence is defined as:

M - mandatory, must be present in the message.

O - optional, present if information is available.

Parameter name Usage

trantype M –> only auth or preauth

request_type M –> fixed value ’register’

request_hash M

purchase_amount M

purchase_currency M

purchase_installments O

order_number M

merchant_id M

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#trantype
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#purchase-installments

31

terminal_id M

payment_method O

purchase_description O

customer_lang O

customer_name O

customer_surname O

customer_address O

customer_country O

customer_city O

customer_zip O

customer_phone O

customer_email O

Register request (without initiating a payment transaction)

Account registration request is sent to icheckout when a customer selects on a webshop page that he wants to
save his card data so that he can use the same card for later payments on the webshop. Customer can save any
number of cards, and can use any of them after they are properly registrated on the icheckout payment system.
Card registration request will be used to generate a unique account_id number that is used for all subsequent
payments with use account requests. For card registration, an icheckout form will be presented to the customer,
in which he must enter all card information (pan, expiry date, cvv…), and when the customer selects “SAVE”
button on the form, card will be registered and the transaction will be processed as preauthorization transaction
with generated account_id. The transaction is processed as preauthorization to verify the customer account. If
the preauthorization is declined, card registration will also be declined. If account_id is generated, it will be
returned in response parameters, and that same account_id information can be later used to make subsequent
orders with “Use account” request type.

Response:

If the transaction is approved response message will contain account_id response parameter filled with assigned
identification code. WEB shop can use this ID code in subsequent requests to identify payment information (card
number, expiry date and card verification data). If the account registration is declined, account_id parameter will
be empty. Payment gateway will reject request for creating account if such functionality is not activated for
merchant.

32

NOTE: customer card data information is not saved on the webshop domain by any means. Customer enters card
data manually, and when account_id is generated by icheckout, it stores encrypted card data that is used for
transaction authorization. Also, card PAN is returned masked to the webshop in response parameters, so it can
be used as a reference to the customer and to the webshop.

Update account

The following table contains request parameters that need to be sent for valid account update.

Presence is defined as:

M - mandatory, must be present in the message.
O - optional, present if information is available.
C - conditional, must be present only if the parameter needs to be updated.

Parameter name Usage

trantype O

request_type M –> fixed value: ’update’

request_hash M

merchant_id M

terminal_id M

account_id M

card_pan C

card_expdate C

card_cvd C

Request:

For update account requests, a customer selects on the webshop which card they would like to modify and
according to the selection, webshop sends an update account request to icheckout. A valid account_id must be
sent in request so that icheckout can correctly update card data. Upon receiving an update account request,
icheckout generates a customer form for card data modification in which a customer enters data that needs to
be modified. For example, if only expiry date needs updating, update account request must contain new and
valid card_expdate parameter and a valid account_id. Parameters like card_pan and card_cvd must be empty in
this case.

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#trantype
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash

33

Response:

The oneclick_result response parameter will contain update confirmation value. Possible values are:

300 = Successful
301 = Reserved for future use
302 = Unable to update, account ID doesn’t exist.
303 = Reserved for future use
304 = Failed, technical error (retry at later time)

Get account

The following table contains request parameters that need to be sent for valid account info fetch.

Presence is defined as:

M - mandatory, must be present in the message.
O - optional, present if information is available.

Parameter name Usage

trantype O

request_type M –> fixed value: ’get’

request_hash M

merchant_id M

terminal_id M

account_id M

Request:

This type of request is used to fetch card information data based on a valid account_id.

Response:

The oneclick_result response parameter will contain retrieval confirmation value. Possible values are:

300 = Successful

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#trantype
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash

34

301 = Reserved for future use
302 = Unable to update, account ID doesn’t exist.
303 = Reserved for future use
304 = Failed, technical error (retry at later time)

Use account

The following table contains request parameters that need to be sent for valid account usage.

Presence is defined as:

M - mandatory, must be present in the message.
O - optional, present if information is available.

Parameter name Usage

trantype M

request_type M –> fixed value: ’use’

request_hash M

merchant_id M

terminal_id M

payment_method O

account_id M

purchase_description O

purchase_amount M

purchase_currency M

order_number M

customer_lang O

customer_name M: for auth/preauth;
O: otherwise

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#trantype
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash

35

customer_surname M: for auth/preauth;
O: otherwise

customer_address M: for auth/preauth;
O: otherwise

customer_country M: for auth/preauth;
O: otherwise

customer_city M: for auth/preauth;
O: otherwise

customer_zip M: for auth/preauth;
O: otherwise

customer_phone M: for auth/preauth;
O: otherwise

customer_email M: for auth/preauth;
O: otherwise

Request:

This type of one-click payment request is used to make payments on a webshop using a valid and registered
account_id. Transaction types that can be processed are: authorization (purchase), preauthorization,
completion, reversal and refund. Card information data doesn’t need to be sent in the request. Instead, a valid
and registered account_id parameter needs to be used.

Response:

The oneclick_result response parameter will contain confirmation value. Possible values are:

300 = Successful
301 = Operation not permitted
302 = Request rejected, account ID doesn’t exist.
303 = Reserved for future use
304 = Failed, technical error

Delete account

The following table contains request parameters that need to be sent for valid account deletion.

36

Presence is defined as:

M - mandatory, must be present in the message.
O - optional, present if information is available.

Parameter name Usage

trantype O

request_type M –> fixed value ’delete’

request_hash M

merchant_id M

terminal_id M

account_id M

Request:

This type of request is used to unregister a specific cardholder card. After account is successfully unregistered,
subsequent payments with Use account requests won’t be possible unless a new register request is sent. A valid
account_id parameter must be presented in the request.

Válasz:

The oneclick_result response parameter will contain deletion confirmation value. Possible values are:

300 = Successful
301 = Reserved for future use
302 = Unable to delete, account ID doesn’t exist.
303 = Reserved for future use
304 = Failed, technical error (retry at later time)

One-Click Payment Examples

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#trantype
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-type
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/documentation/#request-hash

37

Registration with authorization example

Register request:

trantype=auth

request_type=register

purchase_amount=15.00

purchase_currency=191

order_number=1ORD_1211310_9607

merchant_id=SAMPLEMID

terminal_id=SAMPLETID

purchase_description=Test+order

customer_name=TestName

customer_surname=TestSurname

customer_address=Test+Address

customer_country=Hrvatska

customer_city=Test+City1

customer_zip=10000

customer_lang=hr

customer_email=test@email.com

customer_phone=+38512345678

request_hash=78ec32466a1b3f40533ec6d38304c3c9d4e87e96a71629c7ea8a4f0d68fa78355c79b18392e6030

eb6c0a6d28ea2819357d3f3ea3581fb34738d114cea1d974b

On icheckout payment form, customer enters their card data:

card_pan=4********0000

card_expdate=2701

card_cvd=***

Register response:

account_id=23d92892-2c2e-11ec-bead-f0b913d67fdb

acquirer=***

card_type=Visa

card_expdate=2606

customer_address=Test Address

customer_city=Test City1

customer_country=Hrvatska

customer_email=test@email.com

customer_lang=hr

customer_name=TestName

customer_surname=TestSurname

customer_tel=+38512345678

customer_zip=10000

masked_pan=400000******0000

38

merchant_id=DEMOMID

oneclick_result=

order_date=2021-10-13 16:01:57.316

order_number=1ORD_1211310_9607

payment_method=

purchase_amount=15.00

purchase_currency=191

purchase_description=Test order

purchase_installments=

request_type=register

response_appcode=160204

response_hash=750181435d591d12d0f3fc393c236ce136a1e151bacedf4906ec6aeb8b71b4d7e0ac8342681c98

db6a7e75df2c37c6ed1503c0bfe91dcd8551974d4db9430c3a

response_message=APPROVED

response_result=000

response_systan=003169

transaction_type=auth

Since account_id parameter is received in response, account registration was successful.

Update account example

In previous card registration example, a newly assigned account ID was received: 842ec9ca-cde9-11eb-8738-
7acb13d67fdb which can now be used as an example for an account update request.

Update account request:

trantype=auth

request_type=update

merchant_id=SAMPLEMID

terminal_id=SAMPLETID

account_id=842ec9ca-cde9-11eb-8738-7acb13d67fdb

card_expdate=2408

card_cvd=444

request_hash=3f9dba73c8a70818aab720d30076206fd38860bba972ef443e39c7f203950a9928f1693f50f2f7eda

84f6c4da0707413b166a5de723713333cb9ccf6c80d874b

39

Update account response:

APPROVED

account_id=

acquirer=

card_type=

card_expdate=2408

customer_address=

customer_city=

customer_country=

customer_email=

customer_lang=

customer_name=

customer_surname=

customer_tel=

customer_zip=

masked_pan=

merchant_id=SAMPLEMID

oneclick_result=300

order_date=

order_number=

payment_method=

purchase_amount=

purchase_currency=

purchase_description=

purchase_installments=

request_type=update

response_appcode=

response_hash=8c24f5fd9546b638482ae44525ea47c0fcc2bdf87c5df84f923b09b67987ed8d71dde7345679064

afe251a20652369b6894bfce7b06f65a9c1916d7aeba76071

response_message=APPROVED

response_result=000

response_systan=

transaction_type=auth

Since value ‘300’ was received in parameter oneclick_result, the account was successfully updated.

40

Get account example

Get account request:

trantype: auth

request_type: get

merchant_id: SAMPLEMID

terminal_id: SAMPLETID

account_id: 842ec9ca-cde9-11eb-8738-7acb13d67fdb

request_hash:

5ad15ebb79c1cc6edd86c63251217aa5eae496c702fcd9e49bea5a4b61b26877469cf04b74500e8e0573f1659cc9

4fbc4289938b684a036bd3be732f9d22743e

Get account response:

APPROVED

account_id=842ec9ca-cde9-11eb-8738-7acb13d67fdb

acquirer=

masked_pan: 4000*********00

card_expdate: 2312

customer_address=

customer_city=

customer_country=

customer_email=

customer_lang=

customer_name=

customer_surname=

customer_tel=

customer_zip=

discount_amount=

masked_pan=

merchant_id=DEMOBBANK

oneclick_result=300

order_date=

order_number=

payment_method=

purchase_amount=

purchase_currency=

purchase_description=

purchase_installments=

request_type=get

response_appcode=

response_hash=b5717b459b745d469b7189910f5ed90781a912d0f4abeafb9c7e7e87abbd0ffd4a81eb91d32fec

32c1c4d98769abd11aceff31c9c58cd68f7e8e3890f6a3eb25

response_message=APPROVED

41

response_result=000

response_systan=

transaction_type=auth

The get account request was successful since parameters masked_pan and card_expdate are received in
response.

Use account example

Use account request:

trantype: preauth

request_type: use

merchant_id: SAMPLEMID

terminal_id: SAMPLETID

account_id: 842ec9ca-cde9-11eb-8738-7acb13d67fdb

purchase_amount: 1.00

purchase_currency: 191

order_number: ORD_TEST_12345

payment_method:

purchase_description: Test

customer_lang: en

customer_name: TestName

customer_surname: TestSurname

customer_address: TestAddress

customer_country: Hungary

customer_city:

customer_zip:

customer_phone:

customer_email: test@email.com

request_hash:

8ea5147d13e8a1869432280249272eb7cf44ede061918b39c142f7824fadd628784ae5b1a440006bcffa30b5bb55

bc6cbe8a2dc0f1a496cc7b7d16485dd1b0f9

42

Use account response:

APPROVED

customer_address: TestAddress

customer_city:

customer_country: Hungary

customer_email: test@email.com

customer_lang: en

customer_name: TestName

customer_surname: TestSurname

customer_tel:

customer_zip:

order_date:

order_number: ORD_TEST_12345

payment_method:

purchase_amount: 1.00

purchase_currency: 191

purchase_description: Test

purchase_installments: 0

request_type: use

response_appcode: 889834

response_message: APPROVED

response_result: 000

transaction_type: preauth

account_id: 842ec9ca-cde9-11eb-8738-7acb13d67fdb

oneclick_result: 300

response_hash=750181435d591d12d0f3fc393c236ce136a1e151bacedf4906ec6aeb8b71b4d7e0ac8342681c98

db6a7e75df2c37c6ed1503c0bfe91dcd8551974d4db9430c3a

The preauthorization was approved since oneclick_result=300 was received.

43

Delete account example

Delete account request:

trantype: auth

request_type: delete

merchant_id: SAMPLEMID

terminal_id: SAMPLETID

account_id: 842ec9ca-cde9-11eb-8738-7acb13d67fdb

request_hash:

7278b3541776d467b7257dc11037d7b0ce79c08427f841ec225d426af1b3093e6ed0c28205ed4b8651925595dcf

a6cf284da1cb310947dd81d67b3a57619ae0b

Delete account response:

APPROVED

transaction_type: auth

request_type: delete

merchant_id: SAMPLEMID

terminal_id: SAMPLETID

account_id: 842ec9ca-cde9-11eb-8738-7acb13d67fdb

response_message: APPROVED

response_result: 000

oneclick_result: 300

response_hash=b5717b459b745d469b7189910f5ed90781a912d0f4abeafb9c7e7e87abbd0ffd4a81eb91d32fec

32c1c4d98769abd11aceff31c9c58cd68f7e8e3890f6a3eb25

The account was successfully deleted since oneclick_response=300 was received.

44

I. Annex – Logo placement policy

Is mandatory to display Card Companies’s logos on the webshop. Available as a separate file on the Bank’s
website.

II. Annex – Test cases

When testing, transaction request should be sent to the following URL:

https://icheckoutx-test.empiretransactions.eu/iCheckOutX/v1/icheckout/confirm.xhtml (no authentication)

The test cases required to test successful integration are listed in the table below.

In the vPOS terminal card acquiring contract, the merchant has indicated whether it wishes to initiate additional

types of transactions other than the standard payment transactions.

The successful completion of the test cases included in the test group(s) assigned to the transaction type(s)

specified in the contract is a prerequisite for the go live of the vPOS terminal and the delivery of the security key

(to production environment).

Transaction type/ vPOS
services

1. test
group

2. test
group

3. test
group

4. test
group

Purchase +

Pre-authorization + +

Recurring + +

One click purchase + +

1. Test group

Test name Transaction to be
checked

Comment Test case
successful /
unsuccessful

Purchase with Mastercard
card

Request type: transaction

Tran. type: auth

Minimum expected number of
transactions: 10 pcs.

Purchase with VISA card Request type: transaction

Tran. type: auth

Minimum expected number of
transactions: 10 pcs.

Unsuccessful purchase Request type: transaction

Tran. type: auth

Transaction amount:
557 huf (declined)
558 huf (expired card)
559 huf (blocked card)
560 huf (invalid acceptor)
560 huf (insufficient
funds)

Test can only be started with
Mastercard type card. A
minimum of one transacrion is
required for each amount
indicated.

https://www.mbhbank.hu/sw/static/file/1._szamu_melleklet_-_Logok.zip
https://icheckoutx-test.empiretransactions.eu/iCheckOutX/v1/icheckout/confirm.xhtml

45

2. Test group

Test name Transaction to be
checked

Comment Test case successful
/ unsuccessful

Pre-authorization with
Mastercard card

Request type: transaction

Tran. type: pre auth

Minimum expected
number of transactions: 10
pcs.

Pre-authorization with
VISA card

Request type: transaction

Tran. type: pre auth

Minimum expected
number of transactions: 10
pcs.

Unsuccessful Pre-
authorization

Request type: transaction

Tran. type: pre auth

Transaction amount:
557 huf (declined)
558 huf (expired card)
559 huf (blocked card)
560 huf (invalid acceptor)
560 huf (insufficient
funds)

Test can only be started
with Mastercard type card.
A minimum of one
transacrion is required for
each amount indicated.

3. Test group

Test name Transaction to be
checked

Comment Test case successful
/ unsuccessful

First transaction -
Recurring with Mastercard
card

Request type: recurring

Tran. type: auth

Minimum expected
number of transactions: 5
pcs.

Following transaction -
Recurring with Mastercard
card

Request type: recurring

Tran. type: auth

Minimum of one
successful following
transaction is expected for
each first transaction.

First transaction -
Recurring with VISA card

Request type: recurring

Tran. type: auth

Minimum expected
number of transactions: 5
pcs.

46

Test name Transaction to be
checked

Comment Test case successful
/ unsuccessful

Following transaction -
Recurring with VISA card

Request type: recurring

Tran. type: auth

Minimum of one
successful following
transaction is expected for
each first transaction.

Unsuccessful recurring Request type: recurring

Tran. type: auth

Transaction amount:
557 huf (declined)
558 huf (expired card)
559 huf (blocked card)
560 huf (invalid acceptor)
560 huf (insufficient
funds)

Test can only be started
with Mastercard type card.
A minimum of one
transaction is required for
each amount indicated.

4. Test group

Test name Transaction to be
checked

Comment Test case successful
/ unsuccessful

One-click payment –
purchase and registration
with Mastercard card

Request type: register

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment –
Purchase with saved
Mastercard payment
instrument data (token)

Request type: use

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment – saved
Mastercard payment
instrument data
modify/update

Request type: update

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment – saved
Mastercard payment
instrument data query

Request type: get

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment – saved
Mastercard payment
instrument data delete

Request type: delete

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

47

Test name Transaction to be
checked

Comment Test case successful
/ unsuccessful

One-click payment –
purchase and registration
with VISA card

Request type: register

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment –
Purchase with saved VISA
payment instrument data

Request type: use

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment – saved
VISA payment instrument
data modify/update

Request type: update

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment – saved
VISA payment instrument
data query

Request type: get

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment – saved
VISA payment instrument
data delete

Request type: delete

Tran. type: auth or pre
auth

Minimum expected
number of transactions: 5
pcs.

One-click payment –
Unsuccessful purchase

Request type: use

Tran. type: auth or pre
auth

Transaction amount:
557 huf (declined)
558 huf (expired card)
559 huf (blocked card)
560 huf (invalid acceptor)
560 huf (insufficient
funds)

Test can only be started
with Mastercard type card.
A minimum of one
transacton is required for
each amount indicated.

5. Test group – Optional test – pay by link

The request parameters used for a pay by link request are the same as for a normal transaction request. However,

if you use pay by link, you must use the HTTP GET method instead of HTTP POST.

Test name Transaction to be
checked

Comment Test case successful
/ unsuccessful

48

Purchase with Mastercard
card

Request type: transaction

Tran. type: auth

Purchase with VISA card Request type: transaction

Tran. type: auth

III. Annex – Cards for testing

Card numbers of the test cards:

 VISA card:

4176660000000100

 Mastercard (Maestro) card:

5457210001000019

5346931300108113

6799990100000159

For the above test cards, any expiration date and CVC2/CVV2 can be used.

 It will always be rejected regardless of the amount:

Card number: 5444 0340 7823 8013

Expiration date: 11/24

CVC2/CVV2: 916

IV. Annex – Scripts/samples for webshop development

Available as a separate file on the Bank’s website.

https://www.mbhbank.hu/sw/static/file/4._szamu_melleklet_-_Scriptek_mintak_webaruhaz_fejleszteshez.zip

49

V. Annex – Secret key on the Merchant Portal (’Kereskedői portál’)

After successful login, the merchant can access the secret key in the ’Account settings’ menu, which must be

included in the payment request.

The security key is available by clicking on the ’Show key’ button:

VI. Annex – Technical support

Technical support is provided by the staff of Compuworx Zrt. acting on behalf of the Bank, who must receive
confirmation by email of the completion of the test cases described in Annex II. If you have any technical
questions regarding the integration and testing, or would like to receive confirmation of successful completion
of the tests, please contact us at vpos.support@compuworx.hu

mailto:vpos.support@compuworx.hu

